Finalist in Global AI Week Hackathon (Upstage AI Hackathon).

  • Objective: Develop an AI-driven chatbot to assist with supplement and medication intake.
  • Approach:
    • Designed and implemented chatbot functionality using LLMs, Langchain, RAG, and Gradio.
    • Optimized responses through retrieval-augmented generation (RAG).

1st place winner at Smilegate FutureLab AI Service Weeklython.

  • Objective: Create an AI-based game scenario generator for dynamic content creation.
  • Approach:
    • Applied GPT fine-tuning, prompt engineering, and DALL·E.
    • Developed an interactive UI using Gradio.

한글:

  • yolo-v5를 활용한 object detection 모델 개발 및 Jetson-Nano를 이용한 판별 시스템 구축

    • local 환경에서 이물질을 판별할 수 있도록 dataset 구성 및 yolo-v5 baseline model fine-tuning 진행.
    • Jetson-Nano에서 사용할 수 있도록 경량화 진행.
    • 95%의 정확도로 이물질 검출 성능 입증.
    • KSME2022 포스터 발표.

English:

  • Developed an object detection model using YOLOv5 and built a classification system using Jetson Nano.
    • Constructed a dataset for detecting foreign substances in a local environment and fine-tuned a YOLOv5 baseline model.
  • Optimized the model for deployment on Jetson Nano by applying model compression techniques.
  • Achieved 95% accuracy in detecting foreign substances.
  • Presented a poster at KSME2022 (The Korean Society of Mechanical Engineers).

Tech Stack

  • YOLOv5
  • Jetson Nano
  • Python
  • CUDA
  • OpenCV
  • PyTorch