Finalist in Global AI Week Hackathon (Upstage AI Hackathon).
- Objective: Develop an AI-driven chatbot to assist with supplement and medication intake.
- Approach:
- Designed and implemented chatbot functionality using LLMs, Langchain, RAG, and Gradio.
- Optimized responses through retrieval-augmented generation (RAG).
1st place winner at Smilegate FutureLab AI Service Weeklython.
- Objective: Create an AI-based game scenario generator for dynamic content creation.
- Approach:
- Applied GPT fine-tuning, prompt engineering, and DALL·E.
- Developed an interactive UI using Gradio.
한글:
-
yolo-v5를 활용한 object detection 모델 개발 및 Jetson-Nano를 이용한 판별 시스템 구축
- local 환경에서 이물질을 판별할 수 있도록 dataset 구성 및 yolo-v5 baseline model fine-tuning 진행.
- Jetson-Nano에서 사용할 수 있도록 경량화 진행.
- 95%의 정확도로 이물질 검출 성능 입증.
- KSME2022 포스터 발표.
English:
- Developed an object detection model using YOLOv5 and built a classification system using Jetson Nano.
- Constructed a dataset for detecting foreign substances in a local environment and fine-tuned a YOLOv5 baseline model.
- Optimized the model for deployment on Jetson Nano by applying model compression techniques.
- Achieved 95% accuracy in detecting foreign substances.
- Presented a poster at KSME2022 (The Korean Society of Mechanical Engineers).
Tech Stack
- YOLOv5
- Jetson Nano
- Python
- CUDA
- OpenCV
- PyTorch